The energy release in great earthquakes

نویسنده

  • HIROO KANAMORI
چکیده

The conventional magnitude scale M suffers saturation when the rupture dimension of the earthquake exceeds the wavelength of the seismic waves used for the magnitude determination (usually 5-50 km). This saturation leads to an inaccurate estimate of energy released in great earthquakes. To circumvent his problem the strain energy drop W (difference in strain energy before and after an earthquake) in great earthquakes is estimated from the seismic moment Mo. If the stress drop Aa is complete, W = Wo = (Aa/2#)Mo '" Mo/(2 X 10•), where # is the rigidity; if it is partial, Wo gives the minimum estimate of the strain energy drop. Furthermore, if Orowan's condition, i.e., that frictional stress equal final stress, is met, W0 represents the seismic wave energy. A new magnitude scale Mw is defined in terms of Wo through the standard energy-magnitude relation log Wo = 1.5Mw + 11.8. M• is as large as 9.5 for the 1960 Chilean earthquake and connects smoothly to Ms (surface wave magnitude) for earthquakes with a rupture dimension of about 100 km or less. The M• scale does not suffer saturation and is a more adequate magnitude scale for great earthquakes. The seismic energy release curve defined by Wo is entirely different from that previously estimated from Ms. During the 15-year period from 1950 to 1965 the annual average of Wo is more than I order of magnitude larger than that during the periods from 1920 to 1950 and from 1965 to 1976. The temporal variation of the amplitude of the Chandler wobble correlates very well with the variation of Wo, with a slight indication of the former preceding the latter. In contrast, the number N of moderate to large earthquakes increased very sharply as the Chandler wobble amplitude increased but decreased very sharply during the period from 1945 to 1965, when Wo was largest. One possible explanation for these correlations is that the increase in the wobble amplitude triggers worldwide seismic activity and accelerates plate motion which eventually leads to great decoupling earthquakes. This decoupling causes the decline of moderate to large earthquake activity. Changes in the rotation rate of the earth may be an important element in this mechanism.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Spatiotemporal patterns in the energy release of great earthquakes.

For the past 80 years, the energy released in great strike-slip and thrust earthquakes has occurred in alternating cycles of 20 to 30 years. This pattern suggests that a global transfer mechanism from poloidal to toroidal components of tectonic plate motions is operating on time scales of several decades. The increase in seismic activity in California in recent years may be related to an accele...

متن کامل

Do Trench Sediments Affect Great Earthquake Occurrence in Subduction Zones?

-Seismic energy release is dominated by the underthrusting earthquakes in subduction zones, and this energy release is further concentrated in a few subduction zones. While some subduction zones are characterized by the occurrence of great earthquakes, others are relatively aseismic. This variation in maximum earthquake size between subduction zones is one of the most important features of glob...

متن کامل

Elastic energy release in great earthquakes and eruptions

*Correspondence: Agust Gudmundsson, Department of Earth Sciences, Royal Holloway University of London, Queen’s Building, Egham TW20 0EX, UK e-mail: rock.fractures@ googlemail.com The sizes of earthquakes are measured using well-defined, measurable quantities such as seismic moment and released or transformed elastic energy. No similar measures exist for the sizes of volcanic eruptions, making i...

متن کامل

A Semi-markov Model for Characterizing Recurrence of Great Earthquakes by Ashok

A semi-Markov model estimating the waiting times and magnitudes of large earthquakes is proposed. The model defines a discrete-time, discrete-state process in which successive state occupancies are governed by the transition probabilities of the Markov process. The stay in any state is described by an integer-valued random variable that depends on the presently occupied state and the state to w...

متن کامل

Great earthquakes and slab pull : interaction between seismic coupling and plate^slab coupling

Great earthquakes, the few largest earthquakes that account for most of the Earth’s seismic energy release, have occurred at only a few subduction zones around the world. Strong locking, or ‘seismic coupling’, of the interface between plates at certain subduction zones is often invoked to explain these great earthquakes. Although past studies have correlated strong seismic coupling with a compr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007